\qquad Hour \qquad

LIGHT Notes

We see an object in 2 ways:

1. The object is the source of light

Ex:
2. By light reflected from an object which enters our eyes and allows us to see object
\qquad : Energy in the form of electric and magnetic fields- called
electromagnetic radiation. Acts like both a particle and a transverse wave as it travels.

Types of Electromagnetic Energy:

Light:
Visible light is electromagnetic radiation with a λ of $4 \times 10^{-7} \mathrm{~m}$ to $7.5 \times 10^{-7} \mathrm{~m}$
*Travels in straight lines called \qquad
*Does NOT need a \qquad to travel through (why light travels in space)
*Behaves like both a \qquad and a \qquad

The speed of light is \qquad
Speed of light (c) = \qquad

If the wavelength of light increases, what will happen to the frequency of the wave?

Which color (purple or red) has a greater frequency? (more waves/sec) Explain your answer.
\qquad Hour \qquad

Spectroscope Lab:

Use the spectroscope to find the wavelength of each colored line, and then use C $=f \times \lambda$ to calculate the frequency of each. Determine what each element is from list below.

Control/Practice: White Light
\square
Unknown Element \#1:

Unknown Element \#2:
\square

Unknown Element \#3:
\square
The frequencies of possible elements:
Mercury (3 lines): $6.7 \times 10^{14} \mathrm{~Hz}, 5.5 \times 10^{14} \mathrm{~Hz}, 5 \times 10^{14} \mathrm{~Hz}$
Hydrogen (3 lines): $7 \times 10^{14} \mathrm{~Hz}, 6.1 \times 10^{14} \mathrm{~Hz}, 4.3 \times 10^{14} \mathrm{~Hz}$
Neon (3 thick lines, 1 faint line): $5.5 \times 10^{14} \mathrm{~Hz}, 5 \times 10^{14} \mathrm{~Hz}, 4.6 \times 10^{14} \mathrm{~Hz}, 4.5 \times 10^{14} \mathrm{~Hz}$

Take home lab: Calculate the speed of light:
 DUE

\qquad

1. Completely cover the bottom of a paper plate with marshmallows (or chocolate chips, velveeta cheese, shredded cheese, etc.
2. Cook on low heat ($30-60 \mathrm{sec}$) until you see some parts of the food start to melt.
3. Measure the distance between the melted spots: \qquad cm = \qquad m
4. The distance from \#3 is equal to $1 / 2$ a wavelength. What is the microwave λ ? \qquad m
5. Find the frequency of your microwave (use $\mathbf{2 4 5 0} \mathbf{~ M H z}$ if can't find it). \qquad Hz
6. Use $v=f \times \lambda$ to calculate the speed of light \qquad
Show work here:
7. The accepted value for speed of light is: \qquad
8. Determine a \% error for your calculation. (acc-expt) $\times 100 \%$ \qquad
Show work! acc
