LIGHT Notes

We see an object in 2 ways:

1. The object is the source of light

Ex:

2. By light reflected from an object which enters our eyes and allows us to see object

: Energy in the form of electric and magnetic fields- called **electromagnetic radiation**. Acts like both a particle and a transverse wave as it travels.

Types of Electromagnetic Energy:

Electromagnetic Spectrum: **TV, Radio**: long λ , low f **Infrared**: Heat **Ultraviolet**: UV rays emitted Sun, tanning booths Birds, bees may see them

 X-rays: Fires e- at Tungsten which releases x-rays
Gamma rays: high energy found in stars, cancer treat.

Cosmic rays: highest energy Solar flares, supernovas

Light:

Visible light is **electromagnetic radiation** with a λ of 4 x 10⁻⁷ m to 7.5 x 10⁻⁷ m

*Travels in straight lines called _____

*Does NOT need a ______ to travel through (why light travels in space) *Behaves like both a ______ and a _____

The speed of light is	
Speed of light (c) =	

If the wavelength of light increases, what will happen to the frequency of the wave?

Which color (purple or red) has a greater frequency? (more waves/sec) Explain your answer.

Spectroscope Lab:

Use the spectroscope to find the wavelength of each colored line, and then use $C = f \times \lambda$ to calculate the frequency of each. Determine what each element is from list below.

Control/Practice:	White Light
-------------------	-------------

Unknown Element #1: _____

Unknown Element #2: _____

Unknown Element #3: _____

The frequencies of possible elements: **Mercury** (3 lines): 6.7 x 10^{14} Hz, 5.5 x 10^{14} Hz, 5 x 10^{14} Hz **Hydrogen** (3 lines): 7 x 10^{14} Hz, 6.1 x 10^{14} Hz, 4.3 x 10^{14} Hz **Neon** (3 thick lines, 1 faint line): 5.5 x 10^{14} Hz, 5 x 10^{14} Hz, 4.6 x 10^{14} Hz, 4.5 x 10^{14} Hz

Take home lab: Calculate the speed of light: DUE _____

- 1. Completely cover the bottom of a paper plate with marshmallows (or chocolate chips, velveeta cheese, shredded cheese, etc.
- 2. Cook on low heat (30-60 sec) until you see some parts of the food start to melt.
- 3. Measure the distance between the melted spots: _____ cm = _____ m
- 4. The distance from #3 is equal to $\frac{1}{2}$ a wavelength. What is the microwave λ ? _____ m
- 5. Find the **frequency** of your microwave (use **2450 MHz** if can't find it). _____Hz
- 6. Use $v = f \times \lambda$ to calculate the speed of light _____
 - Show work here:
- 7. The accepted value for speed of light is: _____
- 8. Determine a % error for your calculation. <u>(acc-expt)</u> x 100 % ______ Show work! acc

Must be done in a non-rotating microwave!